The SOR method

Example

Consider a linear system $A x=b$, where

$$
A=\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right], \quad b=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]
$$

a) Check, that the SOR method with value $\omega=1.25$ of the relaxation parameter can be used to solve this system.
b) Compute the first iteration by the SOR method starting at the point $x^{(0)}=(0,0,0)^{T}$.

Solution:

a) Let us verify the sufficient condition for using the SOR method. We have to check, if matrix A is symmetric, positive definite ($s p d$): A is symmetric, so let us check positive definitness:
$\operatorname{det}(3)=3>0 \quad, \operatorname{det}\left[\begin{array}{rr}3 & -1 \\ -1 & 3\end{array}\right]=8>0 \quad, \operatorname{det}\left[\begin{array}{rrr}3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]=20>0$
All leading principal minors are positive and so the matrix A is positive definite.
We know, that for spd matrices the SOR method converges for values of the relaxation parameter ω from the interval $0<\omega<2$.
Conclusion: the SOR method with value $\omega=1.25$ can be used to solve this system.
b) The iterations of the SOR method are easier to compute by elements than in the vector form:

1. Write the system as equations:

$$
\begin{aligned}
3 x_{1}-x_{2}+x_{3} & =-1 \\
-x_{1}+3 x_{2}-x_{3} & =7 \\
x_{1}-x_{2}+3 x_{3} & =-7
\end{aligned}
$$

2. First, write down the equations for the $G S$ iterations:

$$
\begin{aligned}
x_{1}^{(k+1)} & =\left(-1+x_{2}^{(k)}-x_{3}^{(k)}\right) / 3 \\
x_{2}^{(k+1)} & =\left(7+x_{1}^{(k+1)}+x_{3}^{(k)}\right) / 3 \\
x_{3}^{(k+1)} & =\left(-7-x_{1}^{(k+1)}+x_{2}^{(k+1)}\right) / 3
\end{aligned}
$$

3. Now multiply the right hand side by the parameter ω and add to it the vector $x^{(k)}$ from the previous iteration multiplied by the factor of $(1-\omega)$:

$$
\begin{aligned}
x_{1}^{(k+1)} & =(1-\omega) x_{1}^{(k)}+\omega\left(-1+x_{2}^{(k)}-x_{3}^{(k)}\right) / 3 \\
x_{2}^{(k+1)} & =(1-\omega) x_{2}^{(k)}+\omega\left(7+x_{1}^{(k+1)}+x_{3}^{(k)}\right) / 3 \\
x_{3}^{(k+1)} & =(1-\omega) x_{3}^{(k)}+\omega\left(-7-x_{1}^{(k+1)}+x_{2}^{(k+1)}\right) / 3
\end{aligned}
$$

4. For $k=0,1,2, \ldots$ compute $x^{(k+1)}$ from these equations, starting by the first one.

Computation for $k=0$:

$$
x_{1}^{(1)}=(1-\omega) x_{1}^{(0)}+\omega\left(-1+x_{2}^{(0)}-x_{3}^{(0)}\right) / 3=(1-1.25) \cdot 0+1.25 \cdot(-1+0-0) / 3=-0.41667
$$

$$
x_{2}^{(1)}=(1-\omega) x_{2}^{(0)}+\omega\left(7+x_{1}^{(1)}+x_{3}^{(0)}\right) / 3=-0.25 \cdot 0+1.25 \cdot(7-0.41667+0) / 3=2.7431
$$

$$
x_{3}^{(1)}=(1-\omega) x_{3}^{(0)}+\omega\left(-7-x_{1}^{(1)}+x_{2}^{(1)}\right) / 3=-0.25 \cdot 0+1.25 \cdot(-7+0.41667+2.7431) / 3=-1.6001
$$

The next three iterations are

$$
\begin{aligned}
& x^{(2)}=(1.4972,2.1880,-2.2288)^{T} \\
& x^{(3)}=(1.0494,1.8782,-2.0141)^{T} \\
& x^{(4)}=(0.9428,2.0007,-1.9723)^{T}
\end{aligned}
$$

the exact solution is equal to $x=(1,2,-2)^{T}$.

